Water Kepor Your 2017 Water Quality Report Since 1990, California public water utilities have been providing an annual Water Quality Report to their customers. **This year's report covers calendar year 2016 drinking water quality testing and reporting.** Your City of Brea Water Division vigilantly safeguards its water supply and, as in years past, the water delivered to your home meets the quality standards required by federal and state regulatory agencies. The U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) are the agencies responsible for establishing and enforcing drinking water quality standards. In some cases, the City goes beyond what is required by testing for unregulated chemicals that may have known health risks but do not have drinking water standards. For example, the California Domestic Water Company (Cal Domestic), which supplies the City with treated groundwater, and the Metropolitan Water District of Southern California (MWDSC), which supplies treated imported surface water to the City, test for unregulated chemicals in our water supply. Unregulated chemical monitoring helps USEPA and DDW determine where certain chemicals occur and whether new standards need to be established for those chemicals to protect public health. Through the drinking water quality testing programs carried out by Cal Domestic for our groundwater, MWDSC for imported surface water and the City of Brea Water Division for our water distribution system, your drinking water is constantly monitored from source to tap for regulated and unregulated constituents. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. # The Quality of Your Water Is Our Primary Concern # Sources of Supply Your drinking water is a blend of surface water imported by the MWDSC, and groundwater imported from Cal Domestic in Whittier. MWDSC's imported water sources are the Colorado River and the State Water Project, which draws water from the Sacramento-San Joaquin River Delta. Cal Domestic water originates from the Main San Gabriel groundwater basin. # Basic Information About Drinking Water Contaminants The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land or through the layers of the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animal and human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. - **Inorganic contaminants**, such as salts and metals, which can be naturally occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining and farming. - Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production or mining activities. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems. - **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses. In order to ensure that tap water is safe to drink, USEPA and the DDW prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791. ### Immuno-Compromised People Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people, such as those with cancer who are undergoing chemotherapy, persons who have had organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. # Cryptosporidium Cryptosporidium is a microscopic organism that, when ingested, can cause diarrhea, fever, and other gastrointestinal symptoms. The organism comes from animal and/or human wastes and may be in surface water. The MWDSC tested their source water and treated surface water for Cryptosporidium in 2016 but did not detect it. If it ever is detected, Cryptosporidium is eliminated by an effective treatment combination including sedimentation, filtration and disinfection. The USEPA and the federal Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from USEPA's Safe Drinking Water Hotline at (800) 426-4791 between 10 a.m. and 4 p.m. Eastern Time (7 a.m. to 1 p.m. in California). ### **Drinking Water Fluoridation** Fluoride has been added to U.S. drinking water supplies since 1945. Of the 50 largest cities in the U.S., 43 fluoridate their drinking water. In December 2007, the MWDSC joined a majority of the nation's public water suppliers in adding fluoride to drinking water in order to prevent tooth decay. In line with recommendations from the DDW, as well as the U.S. Centers for Disease Control and Prevention, MWDSC adjusted the natural fluoride level in imported treated water from the Colorado River and State Water Project to the optimal range for dental health of 0.6 to 1.2 parts per million. Our local water is not supplemented with fluoride. Fluoride levels in drinking water are limited under California state regulations at a maximum dosage of 2 parts per million. There are many places to go for additional information about the fluoridation of drinking water. U.S. Centers for Disease Control and Prevention: www.cdc.gov/fluoridation/ State Water Resources Control Board, Division of Drinking Water www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml For more information about MWDSC's fluoridation program, please contact Edgar G. Dymally at edymally@mwdh2o.com or you may call him at (213) 217-5709. ### Questions about your water? Contact us for answers. For information about this report, or your water quality in general, please contact Ron Krause at (714) 990-7642. The Brea City Council meets at 7:00 p.m. on the first and third Tuesdays of each month in the Council Chambers at 1 Civic Center Circle. Public attendance and participation is encouraged and welcomed. For more information about the health effects of the listed constituents in the following tables, call the U.S. Environmental Protection Agency hotline at (800) 426-4791. # Federal and State Water Quality Regulations # — Water Quality Issues that Could Affect Your Health — # Disinfectants and Disinfection Byproducts Disinfection of drinking water was one of the major public health advances in the 20th century. Disinfection was a major factor in reducing waterborne disease epidemics caused by pathogenic bacteria and viruses, and it remains an essential part of drinking water treatment today. Chlorine disinfection has almost completely eliminated from our lives the risks of microbial waterborne diseases. Chlorine is added to your drinking water at the source of supply (groundwater well or surface water treatment plant). Enough chlorine is added so that it does not completely dissipate through the distribution system pipes. This "residual" chlorine helps to prevent the growth of bacteria in the pipes that carry drinking water from the source into your home. However, chlorine can react with naturally-occurring materials in the water to form unintended chemical byproducts, called disinfection byproducts (DBPs), which may pose health risks. A major challenge is how to balance the risks from microbial pathogens and DBPs. It is important to provide protection from these microbial pathogens while simultaneously ensuring decreasing health risks #### What are Water Quality Standards? Drinking water standards established by USEPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The chart in this report shows the following types of water quality standards: - Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. - Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. - Secondary MCLs: Set to protect the odor, taste, and appearance of drinking water. - Primary Drinking Water Standard: MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements. - Regulatory Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow. #### **How are Contaminants Measured?** - parts per million (ppm) or milligrams per liter (mg/L) - parts per billion (ppb) or micrograms per liter ($\mu g/L$) - parts per trillion (ppt) or nanograms per liter (ng/L) #### What is a Water Quality Goal? In addition to mandatory water quality standards, USEPA and DDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices. The chart in this report includes three types of water quality goals: - Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by USEPA. - Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. - Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. | 2016 City of Brea Imported Groundwater Quality | | | | | | | | | |---|------------------------------|-----------------|--------------------------|----------------------|--------------------|------------------------------|---|--| | Chemical | MCL | PHG
(MCLG) | Average
Amount | Range of Detections | MCL
Violation? | Most Recent
Sampling Date | Typical Source
of Contaminant | | | Radiologicals | | | | | | | | | | Alpha Radiation (pCi/L) | 15 | (0) | <3 | ND - 4.2 | No | 2012 | Erosion of Natural Deposits | | | Uranium (pCi/L) | 20 | 0.43 | 2.5 | 2.2 – 3 | No | 2012 | Erosion of Natural Deposits | | | Organic Chemicals | | | | | | | | | | Tetrachloroethylene, PCE (ppb) | 5 | 0.06 | 0.69 | ND - 1.4 | No | 2016 | Industrial Discharge | | | Trichloroethylene, TCE (ppb) | 5 | 1.7 | 1 | ND - 1.8 | No | 2016 | Industrial Discharge | | | Inorganic Chemicals | | | | | | | | | | Arsenic (ppb) | 10 | 0.004 | 2.1 | 2 – 2.2 | No | 2016 | Erosion of Natural Deposits | | | Barium (ppm) | 1 | 2 | 0.12 | 0.12 | No | 2016 | Erosion of Natural Deposits | | | Fluoride (ppm) | 2 | 1 | 0.28 | 0.27 - 0.29 | No | 2016 | Erosion of Natural Deposits | | | Hexavalent Chromium (ppb) | 10 | 0.02 | 1.9 | 1.4 - 2.5 | No | 2014 | Erosion of Natural Deposits | | | Nitrate (ppm as N) | 10 | 10 | 3.8 | 2.5 - 5.2 | No | 2016 | Fertilizers, Septic Tanks | | | Nitrate + Nitrite (ppm as N) | 10 | 10 | 3.8 | 2.5 - 5.2 | No | 2016 | Fertilizers, Septic Tanks | | | Perchlorate (ppb) | 6 | 1 | <4 | ND - 4.6 | No | 2016 | Industrial Discharge | | | Secondary Standards* | | | | | | | | | | Chloride (ppm) | 500* | n/a | 19 | 19 | No | 2016 | Erosion of Natural Deposits | | | Odor (threshold odor number) | 3* | n/a | 1 | 1 | No | 2016 | Erosion of Natural Deposits | | | Specific Conductance (µmho/cm) | 1,600* | n/a | 490 | 490 | No | 2016 | Erosion of Natural Deposits | | | Sulfate (ppm) | 500* | n/a | 46 | 42 – 49 | No | 2016 | Erosion of Natural Deposits | | | Total Dissolved Solids (ppm) | 1,000* | n/a | 310 | 280 - 330 | No | 2016 | Erosion of Natural Deposits | | | Unregulated Chemicals | | | | | | | | | | Alkalinity, total (ppm as CaCO ₃) | Not Regulated | n/a | 170 | 160 - 170 | n/a | 2016 | Erosion of Natural Deposits | | | Bicarbonate (ppm as HCO ₃) | Not Regulated | n/a | 210 | 200 - 210 | n/a | 2016 | Erosion of Natural Deposits | | | Boron (ppm) | NL=1 | n/a | <0.1 | ND - 0.11 | n/a | 2016 | Erosion of Natural Deposits | | | Calcium (ppm) | Not Regulated | n/a | 68 | 67 – 68 | n/a | 2016 | Erosion of Natural Deposits | | | Hardness, total (ppm as CaCO ₃) | Not Regulated | n/a | 220 | 220 | n/a | 2016 | Erosion of Natural Deposits | | | pH (pH units) | Not Regulated | n/a | 7.8 | 7.8 | n/a | 2016 | Erosion of Natural Deposits | | | N-Nitrosodimethylamine (ppt) | NL=10 | 3 | <2 | ND – 2 | n/a | 2016 | Treated Wastewater;
Industrial Discharge | | | Potassium (ppm) | Not Regulated | n/a | 3.6 | 3.5 – 3.6 | n/a | 2016 | Erosion of Natural Deposits | | | Sodium (ppm) | Not Regulated | n/a | 16 | 16 | n/a | 2016 | Erosion of Natural Deposits | | | Vanadium, Total (ppb) | NL=50 | n/a | 1.8 | ND - 3.6 | n/a | 2016 | Erosion of Natural Deposits; | | | *** | | | | | | | Industrial Discharge | | | ppb = parts-per-billion; ppm = parts-pe | er-million; ppt = par | ts-per-trillion | ; pCi/L = pico ci | uries per liter; NTU | = nephelometric tu | urbidity units; ND = not de | tected; | | ppb = parts-per-billion; ppm = parts-per-million; ppt = parts-per-trillion; pCi/L = pico curies per liter; NTU = nephelometric turbidity units; ND = not detected; n/a = not applicable; MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = California Public Health Goal; NL = Notification Level = average is less than the reporting limit *Contaminant is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color). | 2016 City of Brea Distribution System Water Quality | | | | | | | | |---|---------------------|-------------------|------------------------|-------------------|-------------------------------------|--|--| | Disinfection
Byproducts | MCL
(MRDL/MRDLG) | Average
Amount | Range of
Detections | MCL
Violation? | Typical Source
of Contaminant | | | | Total Trihalomethanes (ppb) | 80 | 25 | 6.8 - 23 | No | Byproducts of Chlorine Disinfection | | | | Haloacetic Acids (ppb) | 60 | 5 | ND - 3.7 | No | Byproducts of Chlorine Disinfection | | | | Chlorine Residual (ppm) | (4 / 4) | 1 | 0.2 - 2.9 | No | Disinfectant Added for Treatment | | | | Aesthetic Quality | | | | | | | | | Color (color units) | 15* | <3 | ND - 7.5 | No | Erosion of Natural Deposits | | | | Odor (threshold odor number) | 3* | 1 | 1 | No | Erosion of Natural Deposits | | | | Turbidity (NTU) | 5* | <0.1 | ND - 1.9 | No | Erosion of Natural Deposits | | | Four locations in the distribution system are tested quarterly for total trihalomethanes and haloacetic acids Twelve locations in the distribution system are tested monthly for color, odor and turbidity. MRDL = Maximum Resdiual Disnfectant Level: MRDLG = Maximum Resdiual Disinfectant Level Goal: **WKDL** = Maximum Resdiual Disnfectant Level; **MKDLG** = Maximum Residual Disinfectant Level Goa *Contaminant is regulated by a secondary standard to maintain aesthetic gualities (taste. odor. color) | Lead and Copper Action Levels at Residential Taps | | | | | | | | | |---|----------------------|----------------|--------------------------------------|---|------------------|----------------------------------|--|--| | | Action Level
(AL) | Health
Goal | 90 th Percentile
Value | Sites Exceeding AL /
Number of Sites | AL
Violation? | Typical Source
of Contaminant | | | | Lead (ppb) | 15 | 0.2 | ND | 0/31 | No | Corrosion of Household Plumbing | | | | Copper (ppm) | 1.3 | 0.3 | 0.22 | 0/31 | No | Corrosion of household plumbing | | | Every three years, at least 30 residences are tested for lead and copper at-the-tap. The most recent set of samples was collected in 2014. Lead was detected in 1 home; 0 exceeded the regulatory action level. Copper was detected in 27 homes; none exceeded the regulatory action level. A regulatory action level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. # Unregulated Chemicals Requiring Monitoring in the Distribution System | Chemical | Notification
Level | PHG | Average
Amount | Range of
Detections | Most Recent
Sampling Date | |----------------------------|-----------------------|------------|-------------------|------------------------|------------------------------| | Chlorate (ppb) | 800 | n/a | 64 | 55 – 80 | 2014 | | Chromium, Hexavalent (ppb) | MCL = 10 | 0.02 | 0.64 | 0.17 - 1.1 | 2014 | | Chromium, Total (ppb)** | MCL = 50 | MCLG = 100 | 0.63 | 0.28 - 0.99 | 2014 | | Molybdenum, Total (ppb) | n/a | n/a | 3.6 | 2.8 – 4.6 | 2014 | | Strontium, Total (ppb) | n/a | n/a | 890 | 710 – 1,100 | 2014 | | Vanadium, Total (ppb) | 50 | n/a | 2.4 | 2.1 – 3.1 | 2014 | ^{**}Total chromium is regulated with an MCL of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 10 ppb. Total chromium was included as part of the unregulated chemicals requiring monitoring. from disinfection byproducts. The Safe Drinking Water Act requires the USEPA to develop rules to achieve these goals. Trihalomethanes (THMs) and Haloacetic Acids (five) (HAA5) are the most common and most studied DBPs found in drinking water treated with chlorine. In 1979, the USEPA set the maximum amount of total THMs allowed in drinking water at 100 parts per billion as an annual running average. Effective in January 2002, the Stage 1 Disinfectants / Disinfection Byproducts Rule lowered the total THM maximum annual average level to 80 parts per billion and added HAA5 to the list of regulated chemicals in drinking water. Your drinking water complies with the Stage 1 Disinfectants / Disinfection Byproducts Rule. Stage 2 of the regulation was finalized by USEPA in 2006, which further controls allowable levels of DBPs in drinking water without compromising disinfection itself. A required distribution system evaluation was completed in 2008 and a Stage 2 monitoring plan has been approved by DDW. Full Stage 2 compliance began in 2012. #### About Lead in Tap Water If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Brea Water Division is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or on the web at: www.epa.gov/safewater/lead. #### Nitrate Advisory At times, nitrate in your tap water may have exceeded one-half the MCL, but it was never greater than the MCL. The following advisory is issued because in 2016 we recorded nitrate measurements in the drinking water supply which exceeded one-half the nitrate MCL. Nitrate in drinking water at levels above 10 milligrams per liter (mg/L) is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. #### PHG, or Average Range of MCL Typical Source Chemical MCL (MCLG) Amount Detections Violation? of Chemical 2016 Metropolitan Water District of Southern California Treated Surface Water | Radiologicals – Tested in 20 | 14 | | | | | | |--|------------------|--------------|-------|---------------|-----|---| | Alpha Radiation (pCi/L) | 15 | (0) | ND | ND – 4 | No | Erosion of Natural Deposits | | Beta Radiation (pCi/L) | 50 | (0) | 5 | 4 – 6 | No | Decay of Man-made or Natural Deposits | | Uranium (pCi/L) | 20 | 0.43 | 3 | 2 – 3 | No | Erosion of Natural Deposits | | Inorganic Chemicals – Teste | d in 2016 | | | | | | | Aluminum (ppm) | 1 | 0.6 | 0.168 | 0.12 - 0.24 | No | Treatment Process Residue, Natural Deposits | | Barium (ppm) | 1 | 2 | 0.138 | 0.138 | No | Refinery Discharge, Erosion of Natural Deposits | | Fluoride (ppm) treatment-related | Control Range 0. | .6 – 1.2 ppm | 0.7 | 0.6 - 0.9 | No | Water Additive for Dental Health | | | Optimal Level | 0.7 ppm | | | | | | Secondary Standards* – Tes | ted in 2016 | | | | | | | Aluminum (ppb) | 200* | 600 | 168 | 120 - 240 | No | Treatment Process Residue, Natural Deposits | | Chloride (ppm) | 500* | n/a | 103 | 101 – 103 | No | Runoff or Leaching from Natural Deposits | | Color (color units) | 15* | n/a | 1 | 1 | No | Naturally-occurring Organic Materials | | Odor (threshold odor number) | 3* | n/a | 3 | 3 | No | Naturally-occurring Organic Materials | | Specific Conductance (µmho/cm) | 1,600* | n/a | 1,040 | 1,030 - 1,050 | No | Substances that Form Ions in Water | | Sulfate (ppm) | 500* | n/a | 260 | 257 – 262 | No | Runoff or Leaching from Natural Deposits | | Total Dissolved Solids (ppm) | 1,000* | n/a | 654 | 650 – 658 | No | Runoff or Leaching from Natural Deposits | | Unregulated Chemicals – Te | sted in 2016 | | | | | | | Alkalinity, total as CaCO ₃ (ppm) | Not Regulated | n/a | 120 | 115 – 124 | n/a | Runoff or Leaching from Natural Deposits | | Boron (ppm) | NL=1 | n/a | 0.15 | 0.15 | n/a | Runoff or Leaching from Natural Deposits | | Calcium (ppm) | Not Regulated | n/a | 76 | 75 – 76 | n/a | Runoff or Leaching from Natural Deposits | | Hardness, total as CaCO ₃ (ppm) | Not Regulated | n/a | 296 | 292 - 300 | n/a | Runoff or Leaching from Natural Deposits | | Hardness, total (grains/gallon) | Not Regulated | n/a | 17 | 17 – 18 | n/a | Runoff or Leaching from Natural Deposits | | Magnesium (ppm) | Not Regulated | n/a | 27 | 26 – 27 | n/a | Runoff or Leaching from Natural Deposits | | pH (pH units) | Not Regulated | n/a | 8.1 | 8.1 | n/a | Hydrogen Ion Concentration | | Potassium (ppm) | Not Regulated | n/a | 5.1 | 5 – 5.1 | n/a | Runoff or Leaching from Natural Deposits | | Sodium (ppm) | Not Regulated | n/a | 103 | 99 – 107 | n/a | Runoff or Leaching from Natural Deposits | | Total Organic Carbon (ppm) | TT | n/a | 2.5 | 2.1 – 2.6 | n/a | Various Natural and Man-made Sources | | | | | | | | | | Turbidity – combined filter effluent
Metropolitan Water District Diemer Filtration Plant | Treatment
Technique | Turbidity
Measurements | TT
Violation? | Typical Source
of Chemical | | |---|------------------------|---------------------------|------------------|-------------------------------|--| | 1) Highest single turbidity measurement | 0.3 NTU | 0.07 | No | Soil Runoff | | | 2) Percentage of samples less than 0.3 NTU | 95% | 100% | No | Soil Runoff | | Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. NTU = nephelometric turbidity units Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT). A treatment technique is a required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly. | Unregulated Chemicals Requiring Monitoring | | | | | | | | | |--|----------|------------|------|-------------|------|--|--|--| | Notification Average Range of Most Recent Chemical Level PHG Amount Detections Sampling Date | | | | | | | | | | 1,4-Dioxane (ppb) | 1 | n/a | 0.36 | 0.33 - 0.37 | 2014 | | | | | Chlorate (ppb) | 800 | n/a | 65 | 57 – 75 | 2014 | | | | | Chromium, Hexavalent (ppb) | MCL = 10 | 0.02 | 2.3 | 2.3 – 2.4 | 2014 | | | | | Chromium, Total (ppb)** | MCL = 50 | MCLG = 100 | 2.2 | 1.8 - 2.5 | 2014 | | | | | Molybdenum, Total (ppb) | n/a | n/a | 1.9 | 1.8 – 2 | 2014 | | | | | Strontium, Total (ppb) | n/a | n/a | 570 | 530 - 620 | 2014 | | | | | Vanadium, Total (ppb) | 50 | n/a | 2 | 1.7 – 2.2 | 2014 | | | | ^{**}Total chromium is regulated with an MCL of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 10 ppb. Total chromium was included as part of the unregulated chemicals requiring monitoring. ### Source Water Assessments Imported (MWDSC) Water Assessment Every five years, MWDSC is required by DDW to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters. The most recent watershed sanitary surveys for MWDSC's source waters are the Colorado River Watershed Sanitary Survey – 2015 Update, and the State Water Project Watershed Sanitary Survey – 2011 Update. Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater. USEPA also requires MWDSC to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWDSC completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed. A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWDSC at (800) CALL-MWD (225-5693). #### Groundwater Assessment An assessment of the drinking water sources for City of Brea Water Division was completed in December 2002. The sources are considered most vulnerable to the following activities associated with contaminants not detected in the water supply: body shops, gas stations, machine shops, metal plating/finishing/fabricating, repair shops, and sewer collection systems. A copy of the complete assessment is available at State Water Resources Control Board, Division of Drinking Water, 605 W. Santa Ana Boulevard, Building 28, Room 325, Santa Ana, CA 92701. You may request a summary of the assessment by contacting the City of Brea Water Division at (714) 990-7691 ## Your Water: Always Available, Always Assured THE DIEMER WATER TREATMENT PLANT, located in the hills above Yorba Linda, processes up to 520 million gallons of clean water per day — enough to fill the Rose Bowl every 4 hours. The water is a blend from both the Colorado River Aqueduct and the State Water Project. At 212-acres, it's one of the largest water treatment plants in the U.S. It provides nearly half of Orange County's total water supply. Water flowing from Diemer meets — or exceeds — all state and federal regulations. And it is kept safe from the treatment plant to your tap by constant testing throughout the distribution network. The City of Brea Water Division monitors the water quality at all sources, reservoirs, and various points on the distribution system. This constant surveillance ensures your drinking water stays within the requirements mandated by the federal Safe Drinking Water Act. This report contains important information about your drinking water. Translate it, or speak with someone who understands it. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alquien que lo entienda bien. # City of Brea Water Division 1 Civic Center Circle Brea, California 92821-5758 PRESORT STD U.S. Postage PAID Santa Ana, CA Permit No. 1208 EDDM/ECRWSS #### **POSTAL CUSTOMER**